

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES SCHOOL OF HEALTH SCIENCES DEPARTMENT OF CLINICAL HEALTH SCIENCES

QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES					
QUALIFICATION CODE: 08BMLS		LEVEL: 8	LEVEL: 8		
COURSE CODE: MMB611S		COURSE NAM	COURSE NAME: MEDICAL MICROBIOLOGY 2A		
SESSION: JUNE 2023		PAPER:	THEORY		
DURATION:	3 HOURS	MARKS:	120		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	MS FREDRIKA ENGELBRECHT			
MODERATOR:	MS VANESSA TJIJENDA			

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly.

PERMISSIBLE MATERIALS

1. Calculator

THIS QUESTION PAPER CONSISTS OF 9 PAGES (Including this front page)

SECTION A (25)

QUESTION 1 [10]

Assess the following statements and decide whether they are <u>true or false</u>. Write only the number of the question and next to it TRUE for a true statement. For all **FALSE statement**, indicate that it is false **and provide a rationale**.

- 1.1 The outer rings of the basal body of bacterial flagella function as bearings, minimizing friction and leakage of materials from the cell at the points of flagellar insertion.
- 1.2 Clumping factor is a cell-associated substance that binds plasma fibrinogen, causing agglutination of the organisms by binding them together with aggregated fibrinogen.
- 1.3 A convalescent carrier is an individual who is incubating the pathogen in large numbers but is not yet ill.
- 1.4 The enzyme tryptophanase can be detected by oxidase test.
- 1.5 Malachite green in the Lowenstein Jensen medium enhances the growth of *Mycobaterium tuberculosis* and serves as a carbon source.
- 1.6 Classification of organisms is the process of systematically dividing them into groups, with species being the smallest and most definite level of division.
- 1.7 Phenols act by denaturing bacterial proteins and disrupting of bacterial cell membranes.

QUESTION 2 [15]

Choose the correct answer and report only the suitable letter next to the relevant question number.

- 2.1 Povidone-iodine is considered to be a
 - A) Iodophore.
 - B) Aldehyde.
 - C) Phenol.
 - D) Halogen. (1)

2.2	Tynda	Ilisation can be defined as:	
	A)	A method used to destroy certain micro-organisms in milk, other dairy	
		products and alcoholic beverages	
	B)	The material is heated to 62 °C for 30 minutes followed by rapid cooling.	
	C)	Heating of the material at 90 to 100 $^{\circ}\text{C}$ for 30 minutes on each of 3	
		consecutive days and incubating the material at 37 $^{\circ}\text{C}$ in between.	
	D)	Materials to be autoclaved are placed in an oven at a temperature of	
		160 - 170 °C for 2 – 3 hours.	(1)
2.3	Potass	sium tellurite blood agar is:	
	A)	A selective media due the presence of the tellurite.	
	B)	A differential media for Corynebacterium diphtheriae.	
	C)	A differential media because of the presence of the tellurite	
	D)	All of the above.	(1)
2.4	The ho	ook of bacterial flagella	
	A)	Is a ring structure attached to the cell membrane.	
	B)	Permits the transmission of a rotary motion.	
	C)	Minimize friction and leakage of material.	
	D)	Able to alter the expressed antigenic type.	(1)
2.5	The po	otassium hydroxide test yields	
	A)	A string formation for gram negative bacteria.	
	B)	A string formation for gram positive bacteria.	
	C)	Bubble production for gram positive bacteria.	
	D)	Bubble production for gram negative bacteria.	(1)

2.6	Extra	celluar coagulase is tested for by means of	
	A)	Tube coagulase test.	
	B)	Slide coagulase test.	
	C)	Both tube and slide coagulase.	
	D)	Rapid thermonuclease test.	(1)
2.7	The n	node of action employed by quaternary ammonium compounds is:	
	A)	Disrupting of bacterial cell membranes.	
	B)	Modifying of bacterial DNA.	
	C)	Denaturing of bacterial proteins.	
	D)	Inactivation of essential metabolic compounds.	(1)
2.8	End s	tage kidney disease is associated with the presence of	
	A)	White cell casts.	
	B)	Broad granular casts.	
	C)	Red cell casts.	
	D)	Waxy casts.	(1)
2.9	Porin	proteins can:	
	A)	Activate complement.	
	В)	Stabilizes the cell wall.	
	C)	Attach to the core polysaccharide.	
	D)	Limit passage of many antimicrobial agents.	(1)
2.10	Fluor	ophores lose their ability to fluoresce through:	
	A)	Exposure to strong acids.	
	B)	Exposure to direct sunlight.	
	C)	Exposure to strong alkalis.	
	D)	When stored in a dark room.	(1)

2.11	Norm	al flora inhibit other bacteria through:	
	A)	the production of bacteriocins.	
	B)	competing with potential pathogens for food and lodging site.	
	C)	influencing clearing mechanisms to get rid of the pathogen.	
	D)	All of the above.	(1)
2.12	latrog	genic infection can be defined as:	
	A)	An illness that can be transmitted from an external source to a patient.	
	B)	An infection produced by medical interventions.	
	C)	An illness that can be transmitted from patient to patient.	
	D)	An illness caused by a replicating or multiplying of an external agent.	(1)
2.13	The m	node of action employed by quaternary ammonium compounds is:	
	A)	Denaturing of bacterial proteins.	
	B)	Inactivation of essential metabolic compounds.	
	C)	Disrupting of bacterial cell membranes.	
	D)	Modifying of bacterial DNA.	(1)
2.14	A bac	terial colony can be explained as:	
	A)	a Pile or mass of a sufficiently large number of cells.	
	B)	a Mass of cells growing on solid media.	
	C)	Bacterial pile on solid media, visible to the naked eye.	
	D)	All of the above.	(1)
2.15	Organ	isms with flagella over the entire cell surface are termed	
	A)	Amphitrichous	
	B)	Amphi-lophotrichous	
	C)	Peritrichous	
	D)	Lophotrichous	(1)

<u>SECI</u>	ION R				(55)
QUES	STION	3			[17]
3.1	Illustr	ate by means of a drawing how	the following	ng crystals would look in a	urine
	wet p	reparation.			
	A) B) C) D)	Calcium oxalate crystals. Uric acid crystals. Triple phosphate crystals. Cystine crystals.			(1)(1)(1)
3.2	Comp media	are in a table form, the functio	ns of selecti	ve, differential and enriche	ed (4)
3.3	Match	n the following slides with the r	elevant staiı	n used in the on it:	
	3.3.1		A)	Negative staining	(1)
	1000	AS CALVE	В)	Ziehl-Neelson stain	(1)
		708 200	C)	Shaeffer-Fulton	(1)
		ASM Microbel/Druny, © Delisie and Tomalty	D)	Capsule stain	(1)
	3.3.2				
	3.3.3				
	1	A STATE OF THE STA			

3.3.4

Judge the following statement by stating if it is true or false and defend youropinion. The epidermis is not a good environment for colonization. (5)

QUESTION 4 [20]

4.1 A first year Medical Laboratory Sciences student was instructed to prepare culture media that will support the growth of *Haemophillus influenza*.

The student comes to you for advice, what would you tell him/her concerning the following.

- A) What culture media will support the growth of *Heamophillus influenza*? (1)
- B) Why will this medium support the growth of *Heamophillus influenza*? (2)
- C) What important steps are required to prepare this medium? (6)
- 4.2 Discuss the factors during specimen collection that could influence the quality of the final microbiology laboratory report that will be send to the doctor. (5)
- 4.3 Illustrate the different growth phases of bacteria by means of a graph. (6)

QUES	STION 5	[18]	
5.1	Differentiate between the different phases during the bacterial growth curve.	(8)	
5.2	Explain the principle and the significance of the bile aesculin agar.	(10)	
SECTI	<u>ON C</u>	(40)	
QUES	STION 6	[23]	
6.1	Compare (in a table form) and justify the gram reaction for gram positive and		
	Gram negative bacteria.	(11)	
6.2	Compose a diagram with labels to illustrate the sporulation process.	(12)	
	One mark allocated to each illustration and one mark allocated to each descrip	tion.	
QUES	TION 7	[17]	
7.1	1 Illustrate the expected positive reactions on a DNAse agar and explain the principle		
	of a positive reaction that could be seen on a DNAse agar plate.	(12)	

7.2 Evaluate the effectiveness of antimicrobial agent T by using the information provided below. (5)

Phenol Concentration	Growth after 5 minutes	Growth after 10 minutes	Growth after 15 minutes
1:25	+	-	-
1:50	+	-	-
1:75	+	-	-
1:100	+	+	-
1:150	+	+	+

Disinfectant T Concentration	Growth after 5 minutes	Growth after 10 minutes	Growth after 15 minutes
1: 200	+	-	-
1: 225	+	+	-
1:250	+	+	-
1:275	+	+	+
1:300	+	+	+

TOTAL: 120 MARKS